

Photosynthetic reaction:

Equation:

Photosynthesis is an endothermic reaction.

Energy transfers from the environment to the chloroplasts by light.

Glucose produced by photosynthesis can be used in a variety of ways

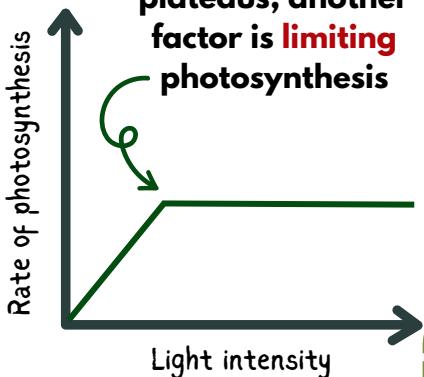
Used in respiration to release energy

Produce cellulose to strengthen cell walls

Stored as fat or oil

Leaves or foods may be tested for:

- glucose
- starch
- protein


Converted into insoluble starch for storage

Produce amino acids for protein synthesis

Nitrate ions from the soil are combined with glucose to produce amino acids

B4.1 Photosynthesis

When the line plateaus, another factor is limiting photosynthesis

Investigating the effect of light intensity on photosynthesis

Aquatic plants like **pondweed** can be used to investigate the rate of photosynthesis under different **conditions**.

- Pondweed is placed in a **test tube** of sodium hydrogen carbonate.
- A lamp is set at a range of **distances** from the test tube.
- Light intensity is **proportional** to distance
- Bubbles of **oxygen** are produced and counted over a set period of time.

Temperature can be controlled using a water bath or beaker

Rate of photosynthesis:

The rate of photosynthesis is affected by a number of factors

1. Light intensity

- Generally, as light intensity increases, the rate of photosynthesis **increases**

2. Carbon dioxide concentration

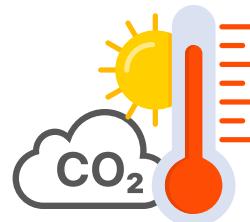
- As carbon dioxide concentration increases, the rate of photosynthesis **increases**, as carbon dioxide is a **reactant**

3. Temperature

- As temperature increases, the rate of photosynthesis **increases**, until a point.
- As the reaction is controlled by enzymes, they **denature** at high temperatures and the rate will **decrease**.

4. Amount of chlorophyll

- Due to chlorophyll **absorbing** light energy, a reduction in chlorophyll will **decrease** the rate of photosynthesis.



Rate of photosynthesis continued:

Limiting factors:

Factors do not work separately, they can **interact**, with any one being the limiting factor.

Temperature and carbon dioxide can interact with the effect of light intensity

- Photosynthesis increases, then factors become limiting
- Increasing carbon dioxide concentration, further **increases** the rate of photosynthesis, until another factor becomes **limiting**
- Increasing temperature further **increases** photosynthesis, until another factor becomes **limiting**
- At point A, **temperature** is limiting photosynthesis

Importance of limiting factors

When factors limit photosynthesis, they reduce crop yields.

B4.1 Photosynthesis continued

Farmers can enhance conditions in **greenhouses**, to achieve maximum photosynthesis.

The cost **effectiveness** of conditions must be considered to also maintain **profits**.

How to enhance factors:

Light	<ul style="list-style-type: none">• Artificial lighting system• Glass greenhouse maxises light transmission• Position plants for maximum absorption
Carbon dioxide	<ul style="list-style-type: none">• Paraffin heaters• Apply liquid carbon dioxide• Grow fungi
Temperature	<ul style="list-style-type: none">• Glass greenhouse increases temperature• Shades and ventilation for cooling
Water	<ul style="list-style-type: none">• Irrigation systems• Hydroponics - grow plants in liquid

Inverse proportions:

Distance and light intensity are **inversely proportional** to each other.

This is because as one increases, the other **decreases**.

Inverse square law:

Light intensity actually decreases in proportion to the **square** of distance.

$$\text{Light intensity} \propto \frac{1}{\text{distance}^2}$$

Use this formula to calculate light intensity when investigating photosynthesis with pondweed.

This means when a lamp is moved 2 metres from the plant, its light intensity is **1/4** the original intensity.

