

An atom:

The smallest part of an _____ that can exist
- the building blocks of all matter

Made up of
protons,
neutrons
and
electrons

e.g. An oxygen atom

In the Periodic Table, elements are represented by a chemical _____

16	O	Oxygen
8		

23	Na	Sodium
11		

Consist of 1 or 2 letters
1st letter - uppercase
2nd letter - lowercase

An element:

A substance made of one type of atom that all contain the same number of _____
- there are about 100 different elements!

Compounds

• A substance made up of _____ or more types of atoms in fixed proportions

• Formed from elements by chemical reactions, making them _____ combined together

• _____ be separated by physical means and often have different properties to the original elements

• Ionic compounds - _____ and non-metal joined as ions

◦ The _____ is the first part of the name

◦ The _____ is the second part of the name

▪ Oxygen - suffix is most likely '-ate' e.g. sodium sulphate (Na_2SO_4)

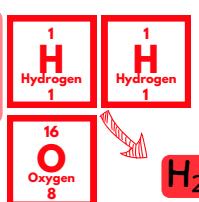
▪ Other non-metals - suffix is mostly likely '-ide' e.g. magnesium chloride (MgCl_2)

• Covalent compounds - _____ chemically bonded together through covalent bonds

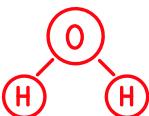
H_2SO_4 - Sulfuric acid

CH_4 - Methane

$\text{C}_2\text{H}_5\text{OH}$ - Ethanol


NH_3 - Ammonia

HCl - Hydrochloric acid


HNO_3 - Nitric acid

C1.1.1 Atoms, Elements and Compounds

Compounds are represented by _____, using the symbols from the atoms they were formed from

Water contains 2 hydrogen and 1 oxygen atoms

Exam Tip: Know the names and symbols of the first 20 elements, plus those in Group 1 and Group 7.

Chemical Reactions

Formation of one or more new substances

Atoms combine in fixed _____ which give them full outer shells

Often involve a detectable _____ change

Can be represented by:

• Word equations $\text{Magnesium} + \text{Hydrochloric Acid} \rightarrow \text{Magnesium Chloride} + \text{Hydrogen}$

Reactants \rightarrow _____

• Formulae $\text{Mg} + 2\text{HCl} \rightarrow \text{MgCl}_2 + \text{H}_2$

• Chemical structures

State symbols

State symbols represent what state each molecule is in during the reaction:

- Solid (s)
- Liquid (l)
- Gas (g)
- Aqueous (aq)

Dissolved in water

Exam Tip: Include state symbols only when instructed.

Balancing Chemical Equations

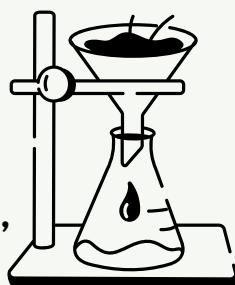
Formulae is used to represent a _____ symbol equation - telling us what is happening to each atom in a reaction. According to the Law of Conservation of Mass, the number of atoms for each element must remain _____ on both sides of the equation.

To balance a chemical reaction:

1. Count the atoms of each element in the reactants.
2. Count the atoms in the products.
3. Use trial and error to find what big numbers equalize the number of atoms for each element on both sides.

Exam Tip: You can change big numbers (e.g. $2\text{Fe}_2\text{O}_3$) but not small numbers (e.g. $2\text{Fe}_2\text{O}_3$)

Filtration:


How it Works:

Used when a **solid** does **dissolve** in a liquid.

- Example: Separating sand from water.

Method:

- Place **filter** in a **funnel** over a beaker.
- the mixture through the funnel.
- Liquid () passes through, solid () stays behind

Filtration does not create a new substance because no chemical bonds are broken or formed.

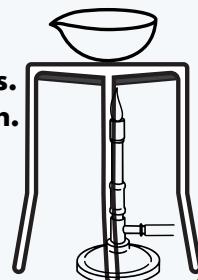
Mixtures are a combination of or more substances that are chemically bonded together.

Mixtures can consist of elements, compounds, or both, but they do not form new .

The chemical properties of each substance in the mixture are .

C1.1.2 Mixtures

Crystallisation:


How it Works:

Used when a **solid** **dissolves** in a liquid and forms upon .

- Example: Copper sulfate crystals from a solution.

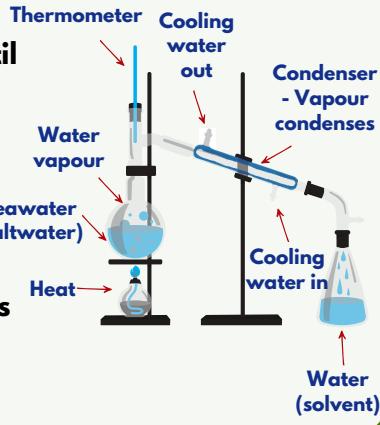
Method:

- the solution to **evaporate** some of the **solvent**.
- Allow the solution to **slowly**.
- Crystals form as decreases.
- Filter** out the crystals and them.

Use filter paper or a drying oven to dry crystals properly.

Simple Distillation

Liquid separation


How it Works:

Used to separate a from a dissolved solid.

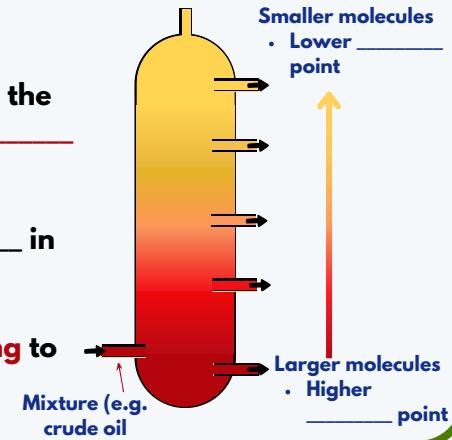
Example: Separating water from seawater.

Method:

- Heat the solution until the **solvent** **evaporates**.
- The **vapour** is **cooled** in a , turning back into liquid.
- The **solvent** () is **collected**, and the **solute** () remains behind.

Fractional Distillation

Liquid separation


How it Works:

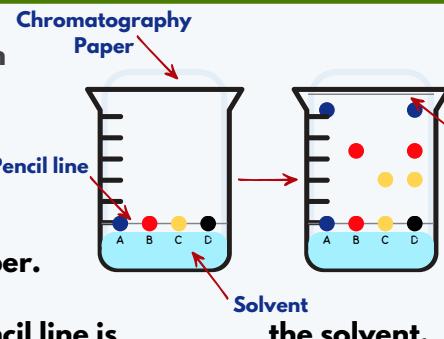
Used to separate two or more miscible liquids and works due to different points.

Example: Crude oil

Method:

- Heat the mixture; the liquid with the **point** **evaporates first**.
- Vapour is in a and collected.
- heating** to separate other components.

Chromatography


Soluble separation

How it Works:

Used to separate different in ink based on .

Method:

- Draw a line on chromatography paper.
- Place **spots** of the **samples** on the line.
- the paper in a **solvent**, ensuring the pencil line is the **solvent**.
- The **solvent** carries the substances up the paper at different .

Exam Tip:
Use a pencil for
you start line -
ink would affect
results!

Exam Tip:
A pure substance
produces one
spot, while a
mixture produces
multiple spots

Stationary phase: The paper.

Mobile phase: The solvent moving through the paper.