#### In the Periodic An atom: The smallest part of an element that can exist Table, elements - the building blocks of all matter are represented by a chemical Made up of Electrons in orbit around symbol protons, the nucleus in 'shells' neutrons Consist of 1 or 2 letters The nucleus and 1st letter - uppercase contains 2nd letter - lowercase electrons protons and An element: A substance made of one type of atom that all

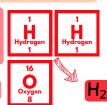
## <u>Compounds</u>

e.g. An oxygen atom

• A substance made up of two or more types of atoms in fixed proportions Compounds are

neutrons

- Formed from elements by chemical reactions, making them chemically combined together
- Cannot be separated by physical means and often have different properties to the original elements
- Ionic compounds metal and non-metal joined as ions
  - The metal is the first part of the name
  - The non-metal is the second part of the name
    - Oxygen suffix is most likely '-ate' e.g. sodium sulphate (Na<sub>2</sub>SO<sub>4</sub>)


CH<sub>1</sub> - Methane

• Other non-metals - suffix is mostly likely '-ide' e.g. magnesium chloride (MgCl<sub>2</sub>)

represented by formulae, using the symbols from the atoms they were formed from

contain the same number of protons

- there are about 100 different elements!



Water contains 2 hydrogen and 1 oxygen atoms



Exam Tip: Know the names and symbols of the first 20 elements, plus those in Group 1 and Group 7.

Covalent compounds - non-metals chemically bonded together through covalent bonds

### C2H5CH - Ethanol - Ammonia

HCI - Hydrochloric acid HNC3 - Nitric acid

C1.1.1 Atoms, Elements and Compounds

## State symbols

State symbols represent what state each molecule is in during the reaction:

- Solid (s)
- Liquid (I)
- Gas (g)
- Aqueous (aq)

**Dissolved** water

Exam Tip: Include state symbols only when instructed.

## **Chemical Reactions**

H2SO4 - Sulfuric acid

Formation of one or more new substances



Atoms combine in fixed proportions which give them full outer shells



### Can be represented by:

Word equations Magnesium + Hydrochloric Acid → Magnesium Chloride + Hydrogen

Reactants

Formulae Mg + 2HCl → MgCl<sub>2</sub> + H<sub>2</sub>

Chemical structures

Products Exam Tip: If there is a catalyst, you

> can write this above the

# **Balancing Chemical Equations**

Formulae is used to represent a balanced arrow symbol equation - telling us what is happening to each atom in a reaction. According to the Law of Conservation of Mass, the number of atoms for each element must remain equal on both sides of the equation.

To balance a chemical reaction:

- 1. Count the atoms of each element in the reactants.
- 2. Count the atoms in the products.
- 3.Use trial and error to find what big numbers equalize the number of atoms for each element on both sides.

Exam Tip: You can change big numbers (e.g. 2Fe<sub>2</sub>O<sub>3</sub>) but not small numbers (e.g. 2Fe<sub>2</sub>O<sub>3</sub>)

### **Half & Ionic Equations**

Half equations show electron behaviour in redox reactions, indicating one species gains electrons while another loses them.

$$Al^{3+} + 3e^- \rightarrow Al$$

$$20^{2^{-}} \rightarrow O_{2} + 4e^{-}$$

 $2O^{2^-} \rightarrow O_2 + 4e^-$ Similarly, ionic equations represent on the behaviour of ions in reactions, simplifying complex processes by showing only the reacting ions. For example, in the neutralization of an acid and an alkali:

$$HCI + NaOH \rightarrow NaCI + H_2O$$

is represented as:

$$H^+ + OH^- \rightarrow H_2O$$

Sodium and chloride ions remain unchanged and are known as spectator

### Filtration:

Insoluble solids

#### **How it Works:**

Used when a solid does not dissolve in a liquid.

Example: Separating sand from water.

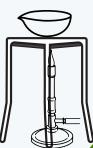
#### Method:

- 1. Place filter paper in a funnel over a beaker.
- 2. Pour the mixture through the funnel.
- 3. Liquid (filtrate) passes through, solid (residue) stays behind

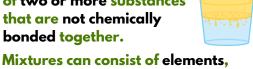


## **Crystallisation:**

#### **How it Works:**


Used when a solid dissolves in a liquid and forms crystals upon evaporation.

Example: Copper sulfate crystals from a solution.


#### Method:

- 1. Heat the solution to evaporate some of the solvent.
- 2. Allow the solution to cool slowly.
- 3. Crystals form as solubility decreases.
- 4. Filter out the crystals and dry them.

Use filter paper or a drying oven to dry crystals properly.



Mixtures are a combination of two or more substances that are not chemically bonded together.



The chemical properties of each substance in the mixture are unchanged.

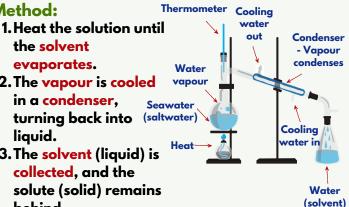
> C1.1.2 **Mixtures**

Mixtures can be separated through physical processes.

Mixtures differ from pure substances, which consist of only one element or compound with identical particles that cannot be physically separated.

## Simple Distillation

not form new substances


compounds, or both, but they do

#### **How it Works:**

Used to separate a liquid from a dissolved solid. Example: Separating water from seawater.

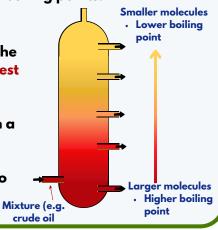
#### Method:

- the solvent evaporates.
- 2. The vapour is cooled in a condenser, turning back into (saltwater) liquid.
- 3. The solvent (liquid) is collected, and the solute (solid) remains behind.



Liquid separation

## **Fractional Distillation**


#### **How it Works:**

Used to separate two or more miscible liquids and works due to different boiling points.

**Example: Crude oil** 

#### Method:

- 1. Heat the mixture; the liquid with the lowest boiling point evaporates first.
- 2. Vapour is cooled in a condenser and collected.
- 3. Continue heating to separate other components.

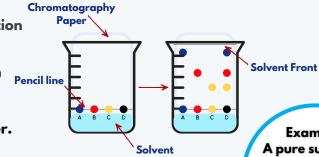


Liquid separation

## **Chromatography**

Soluble separation

#### **How it Works:**


Used to separate different dyes in ink based on solubility.

#### Method:

- 1. Draw a pencil line on chromatography paper.
- 2. Place spots of the samples on the line.
- 3. Dip the paper in a solvent, ensuring the pencil line is above the solvent.
- 4. The solvent carries the substances up the paper at different speeds.

Stationary phase: The paper.

Mobile phase: The solvent moving through the paper.



Exam Tip: Use a pencil for you start line ink would affect results!

**Exam Tip:** 

A pure substance produces one spot, while a mixture produces multiple spots