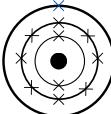


Named for the regular _____ at which properties _____, a result of _____ arrangement.

Elements are arranged in order of increasing number


Periods

The Structure of the Periodic Table

Groups

Numbered 1-7 & 0 (0 instead of Group 8)

Show the number of _____ electrons

Sodium is in Group 1 (1 electron in the outer shell)

Horizontal _____

Row 1

H

Row 2

Li

Be

Row 3

Na

Mg

Row 4

K

Ca

Sc

Ti

V

Cr

Mn

Fe

Co

Ni

Cu

Zn

Ga

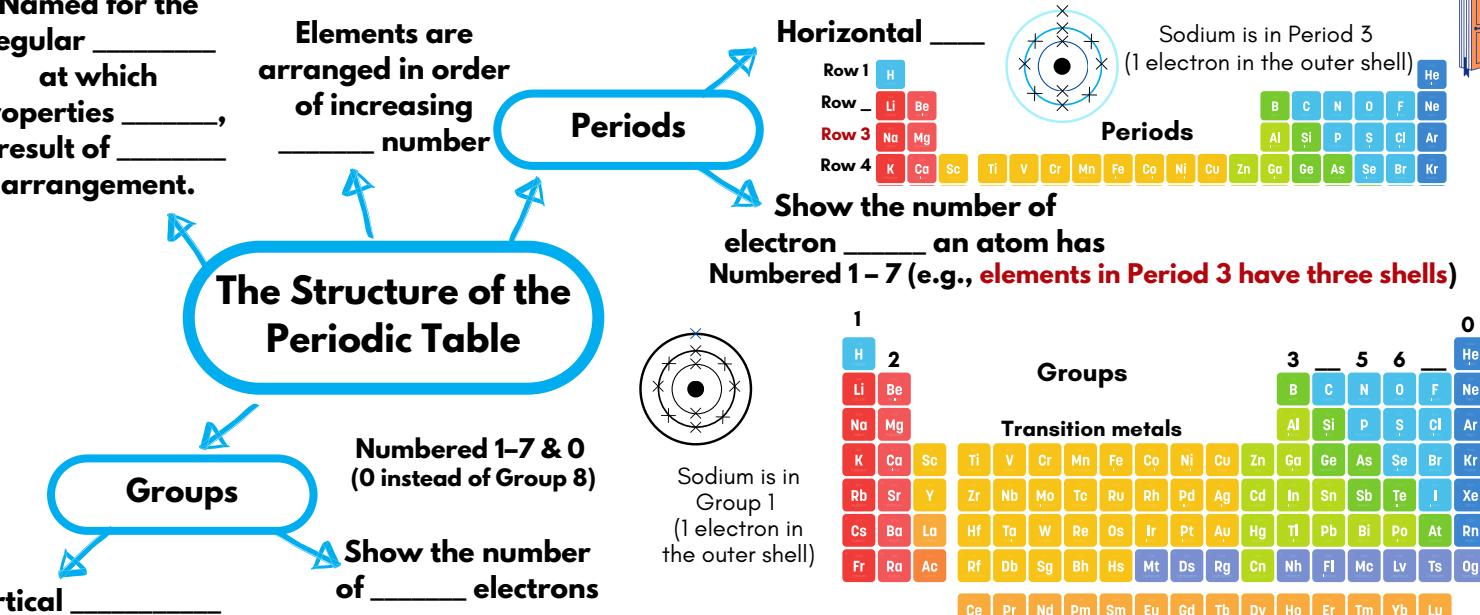
Ge

As

Se

Br

Kr


Periods

Sodium is in Period 3 (1 electron in the outer shell)

B	C	N	O	F	Ne
Al	Si	P	S	Cl	Ar
Ti	V	Cr	Mn	Fe	Co
Sc	Na	Mg	Ni	Cu	Zn
K	Ca	Sc	Ti	V	Cr

Show the number of electron _____ an atom has Numbered 1-7 (e.g., elements in Period 3 have three shells)

1		0
H	2	He
Li	Be	
Na	Mg	
K	Ca	Sc
Rb	Sr	Y
Cs	Ba	La
Fr	Ra	Ac
Ti	V	Cr
Zr	Nb	Mo
Hf	Ta	W
Rf	Db	Sg
Pr		Bh
Nd		Mt
Pm		Ds
Sm		Rg
Eu		Cn
Gd		Nh
Tb		Fl
Dy		Mc
Ho		Lv
Er		Ts
Tm		Og
Yb		
Lu		
Th	Pa	U
Pu	Am	Cm
Am		Bk
Cm		Cf
Bk		Es
Cf		Fm
Es		Md
Fm		No
Md		Lr

How Electronic Structure Relates to the Periodic Table

Feature	Periodic Table Connection	Example: Chlorine (2, 8, 7)
Number of shells	Period	3 - Period 3
Number of electrons in outer shell	_____	7 outer electrons - Group 7
Total number of electrons	_____ number	_____

Development of the Periodic Table

C1.2 The Periodic Table

Early Attempts

Scientists originally arranged elements by atomic _____.

- This method led to errors because _____ were not known.
- Some elements ended up in the wrong _____.

Property	Metals	Non-Metals
Electrical Conductivity	_____	Poor conductor
Heat Conductivity	Good conductor	_____
Appearance	Shiny	_____
Density	High	Low
Malleability	_____	Brittle
Bonding	_____ electrons (form positive ions)	_____ /share electrons (form negative ions)

Dmitri Mendeleev

Contribution

- Arranged elements by atomic weight while maintaining group properties.
- Left _____ for _____ elements, predicting their properties.
- Grouped elements with similar _____ properties for better classification.
- Recognised periodic _____, forming the basis for the modern periodic table.

Limitations

- Ordered by atomic weight instead of atomic number, causing some displacements.
- Lacked knowledge of _____, affecting atomic weight ordering accuracy.
- Couldn't fully explain periodic trends due to limited understanding of _____ particles.

The Modern Periodic Table

The discovery of protons, neutrons, and electrons led to:

- Ordering elements by atomic _____ (not weight).
- Explanation of "pair _____" due to isotopes.
- Fixing incorrect placements (e.g., Tellurium & Iodine).

In Mendeleev's Periodic Table, Iodine (I) was ordered before Tellurium (Te). The modern table orders them by atomic number, placing Iodine (_____ protons) after Tellurium (_____ protons).

52	Te
Tellurium	127.6

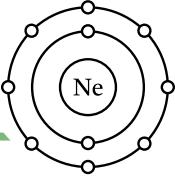
53	I
Iodine	126.90447

Group 0: Noble Gases

Non-reactive and do not easily form compounds.

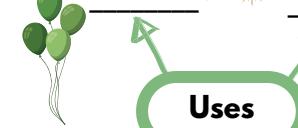
Properties

Exist as monatomic gases (one atom).


One outer shell of electrons → Very stable and unreactive (stable)

Why are Noble Gases Unreactive?

Their outermost shell is full (Helium: 2 electrons, others: 8 electrons).


Since they do not need to gain, lose, or share electrons, they do not readily react.

Used in welding (inert atmosphere)

Balloons, cooling superconductors (lighter than air, non-flammable)

Uses

and

Lights (glows when electricity passes through)

Flash photography, car headlights

Group	Key Features	Trends in Reactivity
Group 0 (Noble Gases)	Unreactive, full outer shell, low boiling points	No trend (inert gases)
Group 1 (Alkali Metals)	Very reactive, soft, low density, low melting points	Increases down the group
Group 7 (Halogens)	Reactive non-metals, form -1 ions, diatomic	Decreases down the group

Trends in Physical Properties

Boiling points increase down the group due to larger atom size and mass, resulting in stronger forces that require more energy to overcome.

Element	Boiling Point (°C)
Helium (He)	-269
Neon (Ne)	-246
Argon (Ar)	-186
Krypton (Kr)	-153
Xenon (Xe)	-108
Radon (Rn)	-61

Group 1: Alkali Metals

Very metals that can be cut with a knife → Very low melting points; increase down the group.

Properties

Low density (Lithium, Sodium, and Potassium are less dense than water). 1 electron in outer shell → Very reactive

C1.2 Groups in the Periodic Table

Reactions of Halogens

With Metals → Forms one metal halides (one).

Equation: Metal + Halogen → Metal Halide

Example: $2\text{Na} + \text{Cl}_2 \rightarrow \text{NaCl}$ (sodium chloride).

With Hydrogen → Forms hydrogen halides (covalent)

Equation: $\text{H}_2 + \text{X}_2 \rightarrow \text{H}_2\text{X}$

Example: $\text{H}_2 + \text{Cl}_2 \rightarrow \text{HCl}$ (hydrogen chloride)

Displacement Reactions: A more reactive halogen displaces a less reactive halogen from its salt solution

Reactivity Order: $\text{Cl}_2 > \text{Br}_2 > \text{I}_2$.

Examples:

$\text{Cl}_2 + 2\text{KBr} \rightarrow \text{KCl} + \text{Br}_2$

- Chlorine displaces bromine

$\text{Br}_2 + 2\text{KI} \rightarrow \text{KI} + \text{Br}_2$

- Bromine displaces iodine

Reactions of Alkali Metals

With Water → Produces hydrogen gas & a metal hydroxide (alkaline solution).

Equation: $2\text{M}(\text{s}) + 2\text{H}_2\text{O}(\text{l}) \rightarrow \text{M}(\text{aq}) + \text{H}_2(\text{g})$

Observations:

- Lithium: Fizzes slightly, moves slowly.
- Sodium: More bubbles, forms a ball, dissolves readily.
- Potassium: Violent reaction, lilac flame, may explode

With Oxygen → Forms metal oxides.

Equation: $4\text{M}(\text{s}) + \text{O}_2(\text{g}) \rightarrow \text{M}_2\text{O}(\text{s})$

Observation: Forms a dull oxide coating when exposed to air.

With Chlorine → Forms metal chlorides (white solids).

Equation: $2\text{M}(\text{s}) + \text{Cl}_2(\text{g}) \rightarrow \text{MCl}(\text{s})$

Observation: The reaction becomes more violent down the group.

Group 7: Halogens

Can be toxic and are highly reactive.

Non-metals with one electron in the outer shell.

Properties

Exist as diatomic molecules (e.g., Cl_2, Br_2).

Reactivity decreases down the group.

Trends in Physical Properties

Melting and boiling points increase down the group due to larger atoms leading to stronger intermolecular forces, which require more energy to overcome.

Element	Density	Melting Point (°C)	Reactivity
Lithium (Li)	0.53 g/cm³	181°C	Least reactive
Sodium (Na)	0.97 g/cm³	98°C	More reactive
Potassium (K)	0.86 g/cm³	63°C	Even more reactive
Rubidium (Rb)	1.53 g/cm³	39°C	Highly reactive
Caesium (Cs)	1.93 g/cm³	28°C	Extremely reactive
Francium (Fr)	Unstable	~27°C	Most reactive (rare and radioactive)

Element	State at Room Temperature	Colour	Boiling Point (°C)
Fluorine (F₂)	Gas	Pale yellow	-188°C
Chlorine (Cl₂)	Gas	Green	-35°C
Bromine (Br₂)	Liquid	Red-brown	59°C
Iodine (I₂)	Solid	Dark grey	184°C
Astatine (At₂)	Solid	Black	302°C

Reactivity increases down the group due to:

- More electron shells, placing the outer shell further from the nucleus.
- Electrostatic attraction for an extra electron.
- Francium is the most reactive; iodine and astatine are the least reactive.