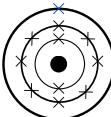

Named for the regular intervals at which properties repeat, a result of electron arrangement.

Elements are arranged in order of increasing atomic number

Periods

Horizontal rows

|       |    |
|-------|----|
| Row 1 | H  |
| Row 2 | Li |
| Row 3 | Na |
| Row 4 | K  |




Sodium is in Period 3 (1 electron in the outer shell)

Periods

|    |    |   |   |    |    |
|----|----|---|---|----|----|
| B  | C  | N | O | F  | Ne |
| Al | Si | P | S | Cl | Ar |

Show the number of electron shells an atom has  
Numbered 1–7 (e.g., elements in Period 3 have three shells)



Sodium is in Group 1 (1 electron in the outer shell)

## The Structure of the Periodic Table

Groups

Numbered 1–7 & 0 (0 instead of Group 8)

Show the number of outer electrons

Vertical columns

|    |    |    |
|----|----|----|
| 1  |    | 0  |
| H  | 2  | He |
| Li | Be |    |
| Na | Mg |    |
| K  | Ca | Sc |
| Rb | Sr | Ti |
| Cs | Ba | V  |
| Fr | Ra | Cr |
|    |    | Mn |
|    |    | Fe |
|    |    | Co |
|    |    | Ni |
|    |    | Cu |
|    |    | Zn |
|    |    | Ge |
|    |    | As |
|    |    | Se |
|    |    | Br |
|    |    | Kr |
|    |    |    |
|    |    | 3  |
|    |    | 4  |
|    |    | 5  |
|    |    | 6  |
|    |    | 7  |
|    |    | He |
|    |    | B  |
|    |    | C  |
|    |    | N  |
|    |    | O  |
|    |    | F  |
|    |    | Ne |
|    |    | Al |
|    |    | Si |
|    |    | P  |
|    |    | S  |
|    |    | Cl |
|    |    | Ar |
|    |    |    |
|    |    | I  |
|    |    | Xe |
|    |    |    |
|    |    | Sn |
|    |    | Sb |
|    |    | Te |
|    |    |    |
|    |    | Pb |
|    |    | Bi |
|    |    | Po |
|    |    | At |
|    |    | Rn |
|    |    |    |
|    |    | Ce |
|    |    | Pr |
|    |    | Nd |
|    |    | Pm |
|    |    | Sm |
|    |    | Eu |
|    |    | Gd |
|    |    | Tb |
|    |    | Dy |
|    |    | Ho |
|    |    | Er |
|    |    | Tm |
|    |    | Yb |
|    |    | Lu |
|    |    |    |
|    |    | Th |
|    |    | Pa |
|    |    | U  |
|    |    | Np |
|    |    | Pu |
|    |    | Am |
|    |    | Cm |
|    |    | Bk |
|    |    | Cf |
|    |    | Es |
|    |    | Fm |
|    |    | Md |
|    |    | No |
|    |    | Lr |

## How Electronic Structure Relates to the Periodic Table

| Subatomic Particle                 | Relative Mass | Example: Chlorine (2, 8, 7) |
|------------------------------------|---------------|-----------------------------|
| Number of shells                   | Period number | 3 - Period 3                |
| Number of electrons in outer shell | Group number  | 7 outer electrons - Group 7 |
| Total number of electrons          | Atomic number | 17                          |

Elements in the same group have similar chemical properties because they have the same number of valence (outer shell) electrons.

## Metals vs. Non-Metals

Metals: Left and centre of the table.

Non-Metals: Right-hand side.

Metalloids: Border between metals and non-metals.

## Development of the Periodic Table

### Early Attempts

Scientists originally arranged elements by atomic weight.



- This method led to errors because isotopes were not known.
- Some elements ended up in the wrong groups.

## C1.2 The Periodic Table

| Property                | Metals                              | Non-Metals                                |
|-------------------------|-------------------------------------|-------------------------------------------|
| Electrical Conductivity | Good conductor                      | Poor conductor                            |
| Heat Conductivity       | Good conductor                      | Poor conductor                            |
| Appearance              | Shiny                               | Dull                                      |
| Density                 | High                                | Low                                       |
| Malleability            | Malleable                           | Brittle                                   |
| Bonding                 | Lose electrons (form positive ions) | Gain/share electrons (form negative ions) |

## Dmitri Mendeleev

### Contribution

- Arranged elements by atomic weight while maintaining group properties.
- Left gaps for undiscovered elements, predicting their properties.
- Grouped elements with similar chemical properties for better classification.
- Recognised periodic trends, forming the basis for the modern periodic table.



### Limitations

- Ordered by atomic weight instead of atomic number, causing misplacements.
- Lacked knowledge of isotopes, affecting atomic weight ordering accuracy.
- Couldn't fully explain periodic trends due to limited understanding of subatomic particles.
- Some elements were mis grouped due to incomplete knowledge and missing elements.

## The Modern Periodic Table

The discovery of protons, neutrons, and electrons led to:

- Ordering elements by atomic number (not weight).
- Fixing incorrect placements (e.g., Tellurium & Iodine).
- Explanation of "pair reversals" due to isotopes.

In Mendeleev's Periodic Table, Iodine (I) was ordered before Tellurium (Te).

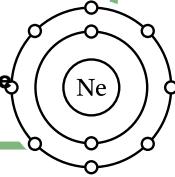
The modern table orders them by atomic number, placing Iodine (53 protons) after Tellurium (52 protons).

|    |                    |
|----|--------------------|
| 52 | Te                 |
|    | Tellurium<br>127.6 |

|    |                     |
|----|---------------------|
| 53 | I                   |
|    | Iodine<br>126.90447 |

# Group 0: Noble Gases

Non-flammable and do not easily form compounds.


Full outer shell of electrons → Very stable and unreactive (inert)

Exist as monatomic gases (single atoms).

## Why are Noble Gases Unreactive?

Their outermost shell is full (Helium: 2 electrons, others: 8 electrons).

Since they do not need to gain, lose, or share electrons, they do not readily react.



## Trends in Physical Properties

Boiling points increase down the group due to larger atom size and mass, resulting in stronger intermolecular forces that require more energy to overcome.

| Element      | Boiling Point (°C) |
|--------------|--------------------|
| Helium (He)  | -269               |
| Neon (Ne)    | -246               |
| Argon (Ar)   | -186               |
| Krypton (Kr) | -153               |
| Xenon (Xe)   | -108               |
| Radon (Rn)   | -61                |

Balloons, cooling superconductors (lighter than air, non-flammable)

Used in welding (inert atmosphere)



## Uses

### Argon

### Xenon and Krypton

Flash photography, car headlights

## Group 1: Alkali Metals

Soft metals that can be cut with a knife

Low melting points; decrease down the group.

## Properties

Low density (Lithium, Sodium, and Potassium are less dense than water).

1 electron in outer shell → Very reactive

## C1.2 Groups in the Periodic Table

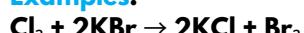
### Reactions of Halogens

With Metals → Forms ionic metal halides (salts).

Equation: Metal + Halogen → Metal Halide

Example:  $2\text{Na} + \text{Cl}_2 \rightarrow 2\text{NaCl}$  (sodium chloride).

With Hydrogen → Forms hydrogen halides (covalent)


Equation:  $\text{H}_2 + \text{X}_2 \rightarrow 2\text{HX}$

Example:  $\text{H}_2 + \text{Cl}_2 \rightarrow 2\text{HCl}$  (hydrogen chloride)


Displacement Reactions: A more reactive halogen displaces a less reactive halogen from its salt solution

Reactivity Order:  $\text{Cl}_2 > \text{Br}_2 > \text{I}_2$ .

Examples:



- Chlorine displaces bromine



- Bromine displaces iodine

### Reactions of Alkali Metals

With Water → Produces hydrogen gas & a metal hydroxide (alkaline solution).



Observations:

- Lithium: Fizzes gently, moves slowly.
- Sodium: More vigorous, forms a ball, dissolves faster.
- Potassium: Violent reaction, lilac flame, may explode

With Oxygen → Forms metal oxides.



Observation: Forms a dull oxide coating when exposed to air.

With Chlorine → Forms metal chlorides (white solids).



Observation: The reaction becomes more vigorous down the group.

## Group 7: Halogens

Can be toxic and are highly reactive.

Non-metals with 7 electrons in the outer shell.

## Properties

Exist as diatomic molecules (e.g.,  $\text{Cl}_2, \text{Br}_2$ ).

Reactivity decreases down the group.

## Trends in Physical Properties

Melting and boiling points increase down the group due to larger atoms leading to stronger intermolecular forces, which require more energy to overcome.

| Element                    | State at Room Temperature | Colour      | Boiling Point (°C) |
|----------------------------|---------------------------|-------------|--------------------|
| Fluorine ( $\text{F}_2$ )  | Gas                       | Pale yellow | -188°C             |
| Chlorine ( $\text{Cl}_2$ ) | Gas                       | Green       | -35°C              |
| Bromine ( $\text{Br}_2$ )  | Liquid                    | Red-brown   | 59°C               |
| Iodine ( $\text{I}_2$ )    | Solid                     | Dark grey   | 184°C              |
| Astatine ( $\text{At}_2$ ) | Solid                     | Black       | 302°C              |

Reactivity decreases down the group due to:

- Increased electron shells, placing the outer shell further from the nucleus.
- Weaker attraction for an extra electron.
- Fluorine is the most reactive; iodine and astatine are the least reactive.

| Element       | Density    | Melting Point (°C) | Reactivity                           |
|---------------|------------|--------------------|--------------------------------------|
| Lithium (Li)  | 0.53 g/cm³ | 181°C              | Least reactive                       |
| Sodium (Na)   | 0.97 g/cm³ | 98°C               | More reactive                        |
| Potassium (K) | 0.86 g/cm³ | 63°C               | Even more reactive                   |
| Rubidium (Rb) | 1.53 g/cm³ | 39°C               | Highly reactive                      |
| Caesium (Cs)  | 1.93 g/cm³ | 28°C               | Extremely reactive                   |
| Francium (Fr) | Unstable   | ~27°C              | Most reactive (rare and radioactive) |