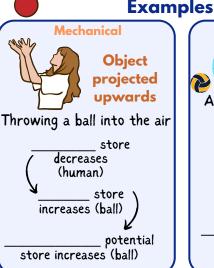
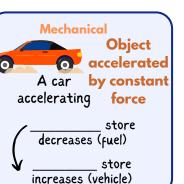


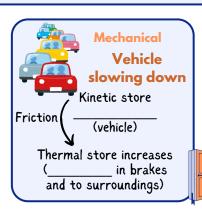
Energy can be usefully transferred to other stores or wasted/dissipated into the surroundings. However, it cannot be created or destroyed.

P1.1.1 Energy Stores and Systems



Energy Transfer Pathways




Energy Transfer Faulways					
Pathway	Description	Example			
Mechanical	Force moves an object through a distance (work done by)	Boat accelerating due to engine			
Electrical	Charges moving due to a potential difference when a flows	Electric kettle heating water			
	Energy is transferred from an object with a higher temperature to one with a lower temperature.	Stove heating a pan			
	Energy transferred by waves (e.g., infrared radiation)	Sun heating the Earth			

Changes in Gravitational Potential Energy Stores

Lifting an object - some energy from the chemical store in muscles is transfer to the of the object, __p

Work done depends on: 1. Change in					
2		=	W	_ h	
	_ ^			_	

The force needed to lift an object at a constant velocity = Ep of the object = the object's weight

▲ Upward movement - Ep _____, equal to work done by person lifting to overcome gravitational force

Downward movement - Ep _____, equal to work done the gravitational force acting on it

Gravitational field strength is different on different planets and celestial objects. Since weight is equal to the gravitational field strength and mass:

Gravitational potential energy,
$$E_p$$
, in _____, J

Mass, m , in kilograms, __

Gravitational field strength, g , in newtons per kilogram, __/__

Height, h , in ____, m

 E_p = mass * ____ * height

Elastic Potential Energy Store

Changes in Kinetic Energy Store

Kinetic Energy - The energy stored in _____ objects The kinetic energy store of the ball ___ if speed increases

The force needed to stretch depends on the extension

$$\begin{bmatrix} E_{-} = \frac{1}{2} k e^{2} \end{bmatrix}$$

Elastic potential energy, $\begin{bmatrix} E_{-} = \frac{1}{2} & k e^{2} \end{bmatrix}$ Ee, in _____, J Spring _____, k, in newtons per metre, _/_ Extension, e, in metres, _

$$E_e = \frac{1}{2}$$
 *spring constant * extension²

Exam Tip:

Questions may involve linking

multiple energy transfers. For

instance, when calculating the

gravitational potential energy of a

ball on a slope, the law of the conservation of energy indicates that a decrease in gravitational

potential energy corresponds to an equal increase in kinetic energy.

Height drop relates to speed's square; quadrupling height speed. Kinetic energy store of falling objects is also _ to the square of their speed.

P1.1.2 Changes in Energy

Therefore, kinetic energy depends on mass and speed

Kinetic energy,
$$E_k$$
, in _____, J

Mass, $E_k = \frac{1}{2} m_{-}^2$

Kinetic energy, E_k , in ____, J

Mass, $E_k = \frac{1}{2} m_{-}^2$

Mass, $E_k = \frac{1}{2} m_{-}^2$

Kinetic energy, E_k , in ____, J

Mass, $E_k = \frac{1}{2} m_{-}^2$

Mass, $E_k = \frac{1}{2} m_{-}^2$

Mass $E_k = \frac{1}{2} m_{-}^2$

An energy transfer of 1 joule per second = power of 1 watt.

Thermometer supply (in series) **Immersion** Measuring specific heat Metal block capacity -See Required Heatproof Insulation Practical 1 mat

Thermal Energy Changes in a System

It takes a different amount of energy to heat up different materials. The amount of thermal energy added, thus temperature rise, depends on:

- The amount of _____ supplied to it
- The _____ of the substance
- _____ the substance is

Change in thermal energy = mass × SHC × temperature change

Change in thermal energy, ΔE , in _____, J

Mass, m, in kilograms, ____

Specific heat capacity, ___, in joules per kilogram per degree Celsius, J/kg °C **Temperature change**, $\Delta\theta$, in degrees Celsius, $^{\circ}$ __

specific heat capacity

Rearranged to calculate

Specific Heat Capacity (SHC):

Energy needed to raise the temperature of __ kg of a substance by __°C

Typical SHC values include:

- Water: _____ J/kg°C Aluminium: 900 J/kg°C,
- Concrete: 880 J/kg°C
- For example, heating 1.0kg of water by 6°C involves a transfer of 25,200J because: $1 \times 4200 \times 6 = 25,200$

